Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Sci Rep ; 14(1): 9509, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664521

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most significant causes of cancer-related deaths in the worldwide. Currently, predicting the survival of patients with HCC and developing treatment drugs still remain a significant challenge. In this study, we employed prognosis-related genes to develop and externally validate a predictive risk model. Furthermore, the correlation between signaling pathways, immune cell infiltration, immunotherapy response, drug sensitivity, and risk score was investigated using different algorithm platforms in HCC. Our results showed that 11 differentially expressed genes including UBE2C, PTTG1, TOP2A, SPP1, FCN3, SLC22A1, ADH4, CYP2C8, SLC10A1, F9, and FBP1 were identified as being related to prognosis, which were integrated to construct a prediction model. Our model could accurately predict patients' overall survival using both internal and external datasets. Moreover, a strong correlation was revealed between the signaling pathway, immune cell infiltration, immunotherapy response, and risk score. Importantly, a novel potential drug candidate for HCC treatment was discovered based on the risk score and also validated through ex vivo experiments. Our finds offer a novel perspective on prognosis prediction and drug exploration for cancer patients.


Asunto(s)
Carcinoma Hepatocelular , Inmunoterapia , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inmunología , Humanos , Inmunoterapia/métodos , Pronóstico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Biomarcadores de Tumor/genética , Resistencia a Antineoplásicos/genética , Transducción de Señal/efectos de los fármacos
2.
Toxicology ; 504: 153787, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522818

RESUMEN

Cadmium (Cd) is a common heavy metal pollutant in the environment, and the widespread use of products containing Cd compounds in industry has led to excessive levels in the environment, which enter the animal body through the food chain, thus seriously affecting the reproductive development of animals. Related studies have reported that Cd severely affects spermatogonia development and spermatogenesis in animals. In contrast, the reproductive toxicity of Cd in males and its mechanism of action have not been clarified. Therefore, this paper reviewed the toxic effects of Cd on germ cells, spermatogonia somatic cells and hypothalamic-pituitary-gonadal axis (HPG axis) of male animals and its toxic action mechanisms of oxidative stress, apoptosis and autophagy from the perspectives of cytology, genetics and neuroendocrinology. The effects of Cd stress on epigenetic modification of reproductive development in male animals were also analyzed. We hope to provide a reference for the in-depth study of the toxicity of Cd on male animal reproduction.


Asunto(s)
Cadmio , Estrés Oxidativo , Reproducción , Animales , Masculino , Cadmio/toxicidad , Reproducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Espermatogénesis/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Apoptosis/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos
3.
BMJ Open ; 14(1): e076911, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38176858

RESUMEN

INTRODUCTION: The incidence of infants who are large-for-gestational-age (LGA) is on the rise in China, and its detrimental effects on health have received increasing attention. Diet-based interventions have the potential to reduce adverse birth outcomes, particularly in decreasing the occurrence of LGA infants. We aim to evaluate the effect of lipid-focused diet education based on the theories of behaviour change in pregnant women on maternal and offspring outcomes through a randomised controlled trial. METHODS AND ANALYSIS: We have designed an open-label, parallel, multicentre randomised controlled trial in collaboration with three hospitals in Beijing, China.Pregnant women will be recruited before reaching 12 weeks of gestation and will be randomised in a 1:1:1 ratio into three arms: (1) online education arm, (2) pregnancy nutrition checklist and 'one-page flyer' arm and (3) routine antenatal education. The primary outcome LGA will be recorded at birth. Demographic information, physical activity, sleep and medical history will be collected through questionnaires and case cards prior to enrolment. Questionnaires will also be used to collect dietary behaviours and psychosocial factors of pregnant women at enrolment, at 24-28 weeks and 34-36 weeks of gestation. Additionally, information on breastfeeding and complementary food supplementation for infants and young children will be obtained through questionnaires. Physical development indicators of children and taste tests will be assessed 3 years after delivery. ETHICS AND DISSEMINATION: The study has received ethical approval from the Capital Medical University Ethics Committee and other collaborating study centres. Informed consent will be introduced to pregnant women, and their consent will be obtained. The findings will be reported in relevant national and international academic conferences and peer-reviewed publications. TRIAL REGISTRATION NUMBER: ChiCTR2300071126.


Asunto(s)
Complicaciones del Embarazo , Resultado del Embarazo , Recién Nacido , Niño , Embarazo , Femenino , Humanos , Preescolar , Mujeres Embarazadas , Dieta , Complicaciones del Embarazo/epidemiología , Aumento de Peso , Lípidos , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Cancer Lett ; 581: 216511, 2024 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-38013049

RESUMEN

Deciphering the mechanisms behind how T cells become exhausted and regulatory T cells (Tregs) differentiate in a tumor microenvironment (TME) will significantly benefit cancer immunotherapy. A common metabolic alteration feature in TME is lipid accumulation, associated with T cell exhaustion and Treg differentiation. However, the regulatory role of free fatty acids (FFA) on T cell antitumor immunity has yet to be clearly illustrated. Our study observed that palmitic acid (PA), the most abundant saturated FFA in mouse plasma, enhanced T cell exhaustion and Tregs population in TME and increased tumor growth. In contrast, oleic acid (OA), a monounsaturated FFA, rescued PA-induced T cell exhaustion, decreased Treg population, and ameliorated T cell antitumor immunity in an obese mouse model. Mechanistically, mitochondrial metabolic activity is critical in maintaining T cell function, which PA attenuated. PA-induced T cell exhaustion and Treg formation depended on CD36 and Akt/mTOR-mediated calcium signaling. The study described a new mechanism of PA-induced downregulation of antitumor immunity of T cells and the therapeutic potential behind its restoration by targeting PA.


Asunto(s)
Ácido Palmítico , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Ácidos Grasos , Ácido Palmítico/farmacología , Linfocitos T Reguladores , Serina-Treonina Quinasas TOR , Microambiente Tumoral
5.
Plant Signal Behav ; 18(1): 2271807, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37903458

RESUMEN

The PAL gene family plays an important role in plant growth, development, and response to abiotic stresses and has been identified in a variety of plants. However, a systematic characterization is still lacking in Ginkgo biloba. Using a bioinformatics approach, 11 GbPAL members of the PAL gene family identified in ginkgo were identified in this study. The protein structure and physicochemical properties indicated that the GbPAL genes were highly similar. Based on their exon-intron structures, they can be classified into three groups. A total of 62 cis-elements for hormone, light, and abiotic stress responses were identified in the promoters of GbPAL genes, indicating that PAL is a multifunctional gene family. GbPAL genes were specifically expressed in different tissues and ploidy of ginkgo. These results provide a theoretical basis for further studies on the functional expression of the GbPAL genes.


Asunto(s)
Ginkgo biloba , Fenilanina Amoníaco-Liasa , Ginkgo biloba/genética , Ginkgo biloba/metabolismo , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas/genética , Perfilación de la Expresión Génica
6.
Plants (Basel) ; 12(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37896026

RESUMEN

Ginkgo biloba L. is a tree species of significant economic and ecological importance. Prior studies of the Ginkgo biloba seed coat have predominantly focused on the sarcotesta and sclerotesta, with less attention paid to the endotesta. In this study, the development and formation of Ginkgo endotesta were examined using light microscopy and transmission electron microscopy. The structural properties of the mature endotesta were analyzed using micro-CT imaging and scanning electron microscopy. The results indicate that the endotesta possess a membranous structure primarily originating from the inner bead peridium, a segment of bead core tissue, and the macrospore membrane. The endotesta from the middle constriction line to the chalazal end comprises a single layer with a greyish-white papery structure. In contrast, the endotesta was divided into two inner and two outer layers, from the middle constriction line to the micropylar end. The outer endosperm adheres closely to the sclerotesta, while the inner endosperm adheres to the seed kernel. The surface of the endotesta was irregularly raised, with thicker wax at the chalazal end, whereas the micropylar end demonstrated similar characteristics with thinner wax and tumor layers. The endotesta contained 17 amino acids, 18 fatty acids, 10 trace elements, and 7 vitamins. Overall, its nutritional value was relatively well balanced.

7.
Hortic Res ; 10(8): uhad136, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37564270

RESUMEN

Ginkgo biloba is an economically valuable tree worldwide. The species has nearly become extinct during the Quaternary, which has likely resulted in reduction of its genetic variability. The genetic variability is now conserved in few natural populations in China and a number of cultivars that are, however, derived from a few ancient trees, helping the species survive in China through medieval times. Despite the recent interest in ginkgo, however, detailed knowledge of its genetic diversity, conserved in cultivated trees and cultivars, has remained poor. This limits efficient conservation of its diversity as well as efficient use of the existing germplasm resources. Here we performed genotyping-by-sequencing (GBS) on 102 cultivated germplasms of ginkgo collected to explore their genetic structure, kinship, and inbreeding prediction. For the first time in ginkgo, a genome-wide association analysis study (GWAS) was used to attempt gene mapping of seed traits. The results showed that most of the germplasms did not show any obvious genetic relationship. The size of the ginkgo germplasm population expanded significantly around 1500 years ago during the Sui and Tang dynasties. Classification of seed cultivars based on a phylogenetic perspective does not support the current classification criteria based on phenotype. Twenty-four candidate genes were localized after performing GWAS on the seed traits. Overall, this study reveals the genetic basis of ginkgo seed traits and provides insights into its cultivation history. These findings will facilitate the conservation and utilization of the domesticated germplasms of this living fossil plant.

10.
BMC Cancer ; 23(1): 154, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36793021

RESUMEN

BACKGROUND: Galectin-3 (Gal-3), the only chimeric ß-galactosides-binding lectin, consists of Gal-3N (N-terminal regulatory peptide) and Gal-3C (C-terminal carbohydrate-recognition domain). Interestingly, Gal-3C could specifically inhibit endogenous full-length Gal-3 to exhibit anti-tumor activity. Here, we aimed to further improve the anti-tumor activity of Gal-3C via developing novel fusion proteins. METHODS: PK5 (the fifth kringle domain of plasminogen) was introduced to the N-terminus of Gal-3C via rigid linker (RL) to generate novel fusion protein PK5-RL-Gal-3C. Then, we investigated the anti-tumor activity of PK5-RL-Gal-3C in vivo and in vitro by using several experiments, and figured out their molecular mechanisms in anti-angiogenesis and cytotoxicity to hepatocellular carcinoma (HCC). RESULTS: Our results show that PK5-RL-Gal-3C can inhibit HCC both in vivo and in vitro without obvious toxicity, and also significantly prolong the survival time of tumor-bearing mice. Mechanically, we find that PK5-RL-Gal-3C inhibits angiogenesis and show cytotoxicity to HCC. In detail, HUVEC-related and matrigel plug assays indicate that PK5-RL-Gal-3C plays an important role in inhibiting angiogenesis by regulating HIF1α/VEGF and Ang-2 both in vivo and in vitro. Moreover, PK5-RL-Gal-3C induces cell cycle arrest at G1 phase and apoptosis with inhibition of Cyclin D1, Cyclin D3, CDK4, and Bcl-2, but activation of p27, p21, caspase-3, -8 and -9. CONCLUSION: Novel fusion protein PK5-RL-Gal-3C is potent therapeutic agent by inhibiting tumor angiogenesis in HCC and potential antagonist of Gal-3, which provides new strategy for exploring novel antagonist of Gal-3 and promotes their application in clinical treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Fase G1 , Puntos de Control del Ciclo Celular , Apoptosis , Galectina 3 , Proliferación Celular , Línea Celular Tumoral
11.
Cancer Immunol Res ; 11(4): 515-529, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36689620

RESUMEN

Costimulatory domains (CSD) of 4-1BB and CD28 are most widely used in chimeric antigen receptor (CAR)-engineered T cells. These CAR T cells have shown encouraging efficacy in the treatment of hematologic malignancies but have limited efficacy in solid tumors. The herpes virus entry mediator (HVEM) is a costimulatory molecule with a novel downstream signaling pathway. In response to target cells, CAR T cells with a HVEM CSD (HVEM-CAR T) displayed more robust cytokine release and cytotoxicity than 4-1BB-CAR T or CD28-CAR T in vitro. Furthermore, HVEM-CAR T showed superior therapeutic efficacy in several mouse tumor models. Mechanistically, the HVEM CSD endowed CAR T cells with attenuated exhaustion, improved function and persistence, and enhanced metabolic activities in tumor tissue compared with 4-1BB-based or CD28-based CAR T cells. These studies establish that the HVEM CSD has the potential to improve the therapeutic efficacy of CAR T cells against solid tumors.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Ratones , Animales , Linfocitos T , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Receptores de Antígenos de Linfocitos T , Antígenos CD28/metabolismo , Internalización del Virus , Transducción de Señal , Neoplasias/terapia , Neoplasias/metabolismo , Inmunoterapia Adoptiva , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012222

RESUMEN

As a representative of gymnosperms, the discovery of natural haploids of Ginkgo biloba L. has opened a new door for its research. Haploid germplasm has always been a research material of interest to researchers because of its special characteristics. However, we do not yet know the special features and mechanisms of haploid ginkgo following this significant discovery. In this study, we conducted a homogenous garden experiment on haploid and diploid ginkgo to explore the differences in growth, physiology and biochemistry between the two. Additionally, a high-depth transcriptome database of both was established to reveal their transcriptional differences. The results showed that haploid ginkgo exhibited weaker growth potential, lower photosynthesis and flavonoid accumulation capacity. Although the up-regulated expression of DEGs in haploid ginkgo reached 46.7% of the total DEGs in the whole transcriptome data, the gene sets of photosynthesis metabolic, glycolysis/gluconeogenesis and flavonoid biosynthesis pathways, which were significantly related to these differences, were found to show a significant down-regulated expression trend by gene set enrichment analysis (GSEA). We further found that the major metabolic pathways in the haploid ginkgo transcriptional database were down-regulated in expression compared to the diploid. This study reveals for the first time the phenotypic, growth and physiological differences in haploid ginkgos, and demonstrates their transcriptional patterns based on high-depth transcriptomic data, laying the foundation for subsequent in-depth studies of haploid ginkgos.


Asunto(s)
Ginkgo biloba , Transcriptoma , Flavonoides/metabolismo , Dosificación de Gen , Ginkgo biloba/genética , Haploidia , Hojas de la Planta/metabolismo
13.
J Cancer Res Clin Oncol ; 148(12): 3511-3520, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35962287

RESUMEN

PURPOSE: Prostate cancer can undergo curative effects by radical prostatectomy or radical radiotherapy. However, the best treatment for more aggressive high-risk prostate cancer remains controversial. Insufficient infiltration capacity and dysfunction are commonly occurrences in engineered T lymphocytes expressing chimeric antigen receptor (CAR-T), characterizing cancer immunotherapy failure. We conducted this study to investigate whether the combinative application of docetaxel and PSMA-CAR-T cells could be a more effective treatment to prostate cancer. METHODS: Expressions of prostate specific membrane antigen (PSMA) on prostate cancer cells were examined by Flow cytometry. The efficaciousness of PSMA-CAR-T was evaluated in vitro using ELISA and RTCA. The effect of intermixed therapy was assessed in vivo utilizing a human prostate cancer liver metastasis mouse model and a human prostate cancer cell xenograft mouse model. RESULTS: The outcome of cytokine discharge and cell killing assays demonstrated that PSMA-CAR-T cells have characteristic effector capacity against PSMA+ prostate cancer cells in vitro. Additionally, collaborative treatment of PSMA-CAR-T cells and docetaxel have cooperative efficacy in a mouse model of human prostate cancer. The merged strategy could be seen as an undeveloped avenue to augmenting adoptive CAR-T cell immunotherapy and mitigating the adverse side effects of chemotherapy. CONCLUSIONS: Cooperation of PSMA-specific CAR-T cells and the chemotherapy drug docetaxel can impressively ameliorate antitumor effectiveness against an installed metastatic human prostate cancer model in NPG mice.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias de la Próstata , Receptores Quiméricos de Antígenos , Masculino , Humanos , Ratones , Animales , Próstata/patología , Docetaxel , Células Supresoras de Origen Mieloide/patología , Neoplasias de la Próstata/tratamiento farmacológico , Inmunoterapia Adoptiva , Linfocitos T , Citocinas , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral
14.
Biol Pharm Bull ; 45(4): 438-445, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35110426

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer related death with few therapeutic treatment options. Under adverse tumor microenvironment, autophagy is an important mechanism of metabolic adaptations to sustain the survival and proliferation of tumor cells. Therefore, targeting autophagic activity represents a promising opportunity for NSCLC treatment. Here, we found that amodiaquine (AQ) increased autophagosome numbers and LC3BII and p62 at protein levels in A549 lung cancer cells suggesting the blockade of autophagic flux by AQ. To identify the key metabolic vulnerability associated with autophagy inhibition by AQ treatment, we then performed transcriptomics analysis in the presence or absence of AQ in A549 lung cancer cells and found stearoyl-CoA desaturase 1 (SCD1) was one of the most highly upregulated with AQ exposure. The induction of SCD1 by AQ exposure at both protein and mRNA level suggests that SCD1 could represent a potential therapeutic target of AQ treatment. Treatment of AQ in combination with SCD1 inhibition by A939572 demonstrated robust synergistic anti-cancer efficacy in cell proliferation assay and a lung cancer mouse xenograft model. Taken together, our study identified SCD1 could be a new therapeutic target upon autophagy inhibition by AQ exposure. Combinational treatment of autophagy inhibition and SCD1 inhibition achieves synergistic anti-tumor effect both in vitro and in vivo. This combinational approach could be a promising strategy for NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Amodiaquina/farmacología , Amodiaquina/uso terapéutico , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Estearoil-CoA Desaturasa/metabolismo , Microambiente Tumoral
15.
Cell Immunol ; 372: 104475, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35063904

RESUMEN

M1 polarization of macrophages works as a promoter in pathogenesis of acute lung injury / acute respiratory distress syndrome (ALI/ARDS) by the secretion of pro-inflammatory cytokines and recruiting other inflammatory cells. Lipopolysaccharide (LPS), a critical component of the wall of gram-negative bacteria, can induce M1 polarization and ALI. Recently, cluster of differentiation 36 (CD36) has been reported to be associated with inflammatory responses. However, it has not yet been clarified whether CD36 in macrophages is involved in LPS-induced ALI. Herein, we demonstrated that in macrophages, LPS-induced ALI was regulated by CD36. Loss of CD36 attenuated LPS-induced ALI by reducing M1 polarization. Mechanistically, CD36 promoted macrophage M1 polarization by regulating CD14 associated with TLR4 during LPS stimulation. The findings of this study, clarified the mechanism of LPS-induced ALI through CD36 in macrophages, which provides a potential target for the prevention and treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Antígenos CD36/inmunología , Macrófagos Alveolares/clasificación , Macrófagos Alveolares/inmunología , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , Traslado Adoptivo , Animales , Antígenos CD36/antagonistas & inhibidores , Antígenos CD36/genética , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos Alveolares/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7 , Transducción de Señal , Receptor Toll-Like 4/metabolismo
16.
BMC Cancer ; 21(1): 1224, 2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34775955

RESUMEN

BACKGROUND: CRBP-1, a cytosolic chaperone of vitamin A, is identified in a serious number of cancers; however, its biological role in hepatocellular carcinoma (HCC) needs to be further explored. The aim of our present study is to explore the roles and mechanisms of CRBP-1 in regulating liver cancer by using in vitro and in vivo biology approaches. METHODS: The expression level of CRBP-1 was detected using immunohistochemistry in HCC and matching adjacent non-tumorous liver tissues. Following established stable CRBP-1 overexpressed HCC cell lines, the cell growth and tumorigenicity were investigated both in vitro and in vivo. Intracellular retinoic acid was quantified by ELISA. The relationship between CRBP-1 and WIF1 was validated by using dual luciferase and ChIP analyses. RESULTS: The low expression of CRBP-1 was observed in HCC tissues compared to the normal liver tissues, while high CRBP-1 expression correlated with clinicopathological characteristics and increased overall survival in HCC patients. Overexpression of CRBP-1 significantly inhibited cell growth and tumorigenicity both in vitro and in vivo. Moreover, overexpression of CRBP-1 suppressed tumorsphere formation and cancer stemness related genes expression in HCC. Mechanically, CRBP-1 inhibited Wnt/ß-catenin signaling pathway to suppress cancer cell stemness of HCC. Furthermore, our results revealed that CRBP-1 could increase the intracellular levels of retinoic acid, which induced the activation of RARs/RXRs leading to the transcriptional expression of WIF1, a secreted antagonist of the Wnt/ß-catenin signaling pathway, by physically interacting with the region on WIF1 promoter. CONCLUSION: Our findings reveal that CRBP-1 is a crucial player in the initiation and progression of HCC, which provide a novel independent prognostic biomarker and therapeutic target for the diagnosis and treatment of HCC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Células Madre Neoplásicas , Proteínas Celulares de Unión al Retinol/metabolismo , Vía de Señalización Wnt , Animales , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Femenino , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Proteínas de Neoplasias/metabolismo , Receptores de Ácido Retinoico/metabolismo , Receptores X Retinoide/metabolismo , Esferoides Celulares , Regulación hacia Arriba , beta Catenina/metabolismo
17.
Pharmacol Res ; 174: 105829, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34411731

RESUMEN

BACKGROUND: Lenvatinib, a tyrosine kinase inhibitor, has been approved for the treatment of several cancers. However, its regulatory activity and related mechanisms on T cell antitumour immunity need to be further investigated. METHODS: The antitumour activity of lenvatinib in immunocompetent and immunodeficient mice was compared to determine the role of T cell immunity. The antitumour activity of T cells was analysed by cytokine production and adoptive T cell therapy. The immunosuppressive effects of MDSCs on T cells were determined by detecting cytokine production in T cells after being cocultured with MDSCs. The adjuvant immunotherapy effect of lenvatinib was determined by combination therapy with CAR-T cells targeted carbonic anhydrase IX (CAIX) in a murine renal cancer model. RESULTS: The antitumour activity of lenvatinib was greater in immunocompetent mice than in immunodeficient mice and was attenuated by CD8+T cell depletion. Lenvatinib increased proliferation, tumour infiltration and antitumour activity of T cells. Importantly, adoptive transfer of lenvatinib-treated T cells showed a long-term antitumour response in vivo. Mechanistically, lenvatinib upregulated T cell-related chemokines (CXCL10 and CCL8) in tumours and decreased the frequency and immunosuppressive activity of MDSCs. Furthermore, lenvatinib enhanced the efficacy of CAR-T cells in a murine renal cancer model. CONCLUSION: Our study revealed novel antitumour mechanisms of lenvatinib by enhancing T cell-mediated antitumour immunity. These findings are of great significance for guiding the clinical use of lenvatinib and provide a good candidate for future combination therapy with T-cell therapies or other immunotherapies.


Asunto(s)
Inmunosupresores/farmacología , Neoplasias Renales/tratamiento farmacológico , Compuestos de Fenilurea/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Receptores Quiméricos de Antígenos/inmunología , Animales , Linfocitos T CD8-positivos , Anhidrasa Carbónica IX/metabolismo , Quimiocinas/metabolismo , Femenino , Humanos , Inmunidad Celular , Inmunoterapia , Neoplasias Renales/inmunología , Ratones Desnudos , Células Supresoras de Origen Mieloide , Neoplasias Experimentales , Microambiente Tumoral
18.
Front Oncol ; 11: 663517, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33954115

RESUMEN

BACKGROUND: Advanced renal cell carcinoma (RCC) has a very dismal prognosis. Cabozantinib, a tyrosine kinase inhibitor, has been approved for the treatment of advanced RCC. However, the impact of cabozantinib on the immune microenvironment of RCC remains poorly understood. METHODS: Kaplan-Meier survival curves were constructed to examine the correlation between intratumor infiltration of neutrophils and patient prognosis in RCC. Infiltration and effector function of neutrophils and T cells in response to cabozantinib treatment were investigated in a murine RCC model. RESULTS: A retrospective study of 307 RCC patients indicated that neutrophils were recruited into tumor tissues, and increased neutrophil infiltration was associated with improved clinical outcomes. In a murine model of RCC, cabozantinib treatment significantly increased both intratumor infiltration and anti-tumor function of neutrophils and T cells. Mechanistically, we found that cabozantinib treatment induced expression of neutrophil-related chemokines (CCL11 and CXCL12) and T cell-related chemokines (CCL8 and CX3CL1) in the tumor microenvironment. Furthermore, depletion of neutrophils and CD8+ T cells compromised the therapeutic efficacy of cabozantinib. Importantly, cabozantinib treatment induced long-term anti-tumor T cell response. CONCLUSIONS: Our study revealed novel mechanisms of the therapeutic effects of cabozantinib on RCC by activating both neutrophil-mediated innate immunity and T cell-mediated adaptive immunity. These findings are of great significance for guiding the clinical use of cabozantinib and provide a good candidate for future combination therapy with T-cell therapies or other immunotherapies.

19.
Cell Death Dis ; 11(1): 31, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31949131

RESUMEN

Transketolase (TKT), which is a metabolic enzyme in the nonoxidative phase of the pentose phosphate pathway (PPP), plays an important role in providing cancer cells with raw materials for macromolecular biosynthesis. The ectopic expression of TKT in hepatocellular carcinoma (HCC) was reported previously. However, the role of TKT in the initiation of liver cancer is still obscure. In our previous study, we found that TKT deficiency protects the liver from DNA damage by increasing levels of ribose 5-phosphate and nucleotides. What's more interesting is that we found TKT deficiency reduced bile acids and loss of TKT promoted the farnesoid receptor (FXR) expression. We further showed that TKT translocated into the nucleus of HCC cell lines through interacting with the signal transducer and activator of transcription 1 (STAT1), and then the complex inhibited FXR expression by promoting the binding of histone deacetylase 3 (HDAC3) to FXR promoter.


Asunto(s)
Carcinoma Hepatocelular/genética , Núcleo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas/metabolismo , Neoplasias Hepáticas/genética , Regiones Promotoras Genéticas , Receptores Citoplasmáticos y Nucleares/genética , Transcetolasa/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Humanos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo , Factor de Transcripción STAT1/metabolismo , Transcetolasa/deficiencia
20.
Am J Cancer Res ; 9(11): 2379-2396, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31815041

RESUMEN

The adoptive transfer of chimeric antigen receptor-modified T (CAR-T) cells is a novel cancer treatment that has led to encouraging breakthroughs in the treatment of haematological malignancies. The efficacy of infused CAR-T cells is associated with a high CAR-positive expression rate, a strong proliferative response and the persistence of CAR-T cells in vivo. Manufacturing CAR-T cells is a process usually associated with the decreased CAR-positive expression rate and terminal differentiation of the infused CAR-T cells, which causes decreased proliferation and persistence of CAR-T cells in vivo. Therefore, the preparation of a high CAR-positive expression rate and few differentiated CAR-T cells is particularly important for clinical cancer treatment. In this study, we transduced and expanded CAR-T cells targeting the epithelial cell adhesion molecule (EpCAM) in the presence of an Akt inhibitor (MK2206) during the initial stage of CAR-T cell preparation. We show that the Akt inhibitor did not suppress the proliferation or effector function of the EpCAM-CAR-T cells but increased the CAR-positive expression rate and decreased the number of terminally differentiated EpCAM-CAR-T cells. Furthermore, EpCAM-CAR-T cells prepared using this protocol appeared to have enhanced antitumor activity in vivo. Taken together, these findings suggest that Akt inhibition during the initial stage of CAR-T cell preparation could improve the performance of CAR-T cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...